A Coding Method for Efficient Subgraph Querying on Vertex- and Edge-Labeled Graphs

نویسندگان

  • Lei Zhu
  • Qinbao Song
  • Yuchen Guo
  • Lei Du
  • Xiaoyan Zhu
  • Guangtao Wang
چکیده

Labeled graphs are widely used to model complex data in many domains, so subgraph querying has been attracting more and more attention from researchers around the world. Unfortunately, subgraph querying is very time consuming since it involves subgraph isomorphism testing that is known to be an NP-complete problem. In this paper, we propose a novel coding method for subgraph querying that is based on Laplacian spectrum and the number of walks. Our method follows the filtering-and-verification framework and works well on graph databases with frequent updates. We also propose novel two-step filtering conditions that can filter out most false positives and prove that the two-step filtering conditions satisfy the no-false-negative requirement (no dismissal in answers). Extensive experiments on both real and synthetic graphs show that, compared with six existing counterpart methods, our method can effectively improve the efficiency of subgraph querying.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Labeling Subgraph Embeddings and Cordiality of Graphs

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...

متن کامل

Vertex Decomposable Simplicial Complexes Associated to Path Graphs

Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...

متن کامل

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

Subgraph Queries by Context-free Grammars

We describe a method for querying vertex- and edge-labeled graphs using context-free grammars to specify the class of interesting paths. We introduce a novel problem, finding the connection subgraph induced by the set of matching paths between given two vertices or two sets of vertices. Such a subgraph provides a concise summary of the relationship between the vertices. We also present novel al...

متن کامل

On the revised edge-Szeged index of graphs

The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014